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ABSTRACT.

In this paper we evaluate the effect of the interrogation
oscillator frequency noise on the stability of a pulsed
atomic frequency standard such as an atomic fountain or
ion trap frequency standard. The atomic response to a
phase perturbation in Ramsey and multi-Rabi
interrogation schemes has been calculated using the
density matrix formalism. The results of these
calculations are used to obtain a simple model for the
limitation of the frequency standard stability. An
experimental evaluation of this effect has been
performed by using the Cs atomic fountain frequency
standard. Possible means to reduce this effect are
considered.

1 INTRODUCTION.

The development of new passive frequency standards
using trapped ions or cold atoms has produced devices
with a potential fractional frequency stability of the
order of 10712 or better. In this new type of standards,
the internal interrogation process and the control of the
interrogation oscillator are periodic, with period T,. The
frequency of this oscillator is compared to that of the
atomic resonance during a part of the operating cycle
only and its frequency is controlled at the end of each
cycle.

In the late eighties, one of us [1] at the Jet Propulsion
Laboratory derived the atomic response to the oscillator
frequency fluctuations using a geometrical approach.
Furthermore, he has shown that the oscillator frequency
noise at Fourier frequencies which are close to multiples
of 1/T, is down-converted, leading to a degradation of
the long-term frequency stability.

This work has been the motive for new thoughts on this
subject and the present paper reports briefly a part of the
results achieved.

The atomic response to a frequency variation in the
interrogation oscillator is deduced from a quantum
mechanical treatment for different interrogation schemes
using the Ramsey and the multi-Rabi [2] methods.

The equation giving the frequency stability limitation
arising from the oscillator frequency noise down-
conversion is derived from simple reasoning. The
validity of this formula is verified experimentally.
Finally, possible means of reducing this spurious effect
are considered.

2 SENSITIVITY FUNCTION TO OSCILLATOR
FREQUENCY FLUCTUATIONS: A RECALL.

Let 8P be the change of the probability that a transition
occurred, at the outcome of the atom interaction with the
R.F. field. If this change is the result of a fluctuation,
Saxt), of the frequency of the field during the
interaction, we have [1]:
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This equation defines g(z), the sensitivity function to
frequency fluctuations. The integration holds during the
time T; of the interaction.

It is worth noting that the R.F. field is frequency
modulated. Its (angular) frequency is a(t)+ @, or @(t)-@,
according to the half period of modulation considered.
axt) is very close to the atom resonance frequency Oy
and @, is the modulation depth. In Eq. (1), da(t) is the
fluctuation of a(t) and g(t) is the sensitivity function at
the frequency ay=aw,,.

It has been shown that g(#) can be calculated by
introducing an infinitesimally small phase step € at time
t in the oscillator frequency. It produces the change
OP(t,€) of the probability that a transition occurred and
g(1) is given by:

g(t)=21im é P(r.€)/ ¢ )

£-0

In frequency standards considered here the function g(t)
it not a constant during each cycle (T.). As explained in
the following this causes the degradation of the
frequency stability of the locked oscillator.

European Frequency Time Forum, 5-7 March 1996 Conference Publication No 418 © IEE 1996



67

3 FUNDAMENTAL LIMITATION OF THE
FREQUENCY STABILITY DUE TO SAMPLING.

3.1 Origin of the effect.

The control loop being closed, frequency corrections are
applied to the interrogation oscillator at discrete times #,
at the end of each cycle. Immediately after this
adjustment, the frequency offset is Am(t;). Between the
instants #, and f.;, the frequency of the oscillator varies
freely and the offset Aa(t)=aft)-ap of the R.F. field is
given by :

Aw(t)= Ao, (t) + A0, (1) - Aw (1) 1, <1<ty ()

The subscripts s and f stand for slaved and free,
respectively. The frequency offsets considered are those
of the RF. field when the deviation due to the
modulation is not taken into consideration.

The variation Aa(?) of the frequency of the interrogation
field induces a change in the probability that the
transition occurred and this adds a term to the error
signal. This term can be interpreted as being produced
by a false frequency offset dayz) of the applied field,
which is given by :

T,
6(0f ([k).__}_o‘lf‘[li * g(t)[ACOf (t)—A(Df (tk )]dt ,(4)

where g, is the mean value of g(z) during the same cycle.
The frequency control loop includes a numerical
integration. It can be shown that its equation is the
following :

Aoyt )~ (1- Blaos () + B Ao ()
=80 (1) - Aoy (1) - B[&”f (gt )+ 800 (fk-z)]

&)
where the optical detection noise is not considered. and
B is the open loop gain. For slow frequency fluctuations,
Eq. (5) shows that we have :

wa(tk)=—'5wjr(tk) (6)

In Eq.(4), g(t)/gy is a periodic function of time with
frequency 1/7,. Therefore the spectral components of
Aay(t) around frequencies m/T, will be translated to the
very low frequencies. This is the equivalent of an
aliasing phenomenon in a sampling process.

3.2 Derivation of the formula for the long term
frequency stability limitation.

We will consider the limitation of the frequency
stability, for observation times 7T sufficiently larger than
the servo-loop time constant. For this analysis we

assume that the bandwidth of the down-converted noise,
4, is of the order of magnitude of 1/7, and thus smaller
than 1/T,.

The low frequency noise in the bandwidth Af originates
from spectral components of the oscillator noise around
Fourier frequencies m/T.. Then, it suffices to consider
that part of the oscillator frequency noise which 1is
filtered in a set of spectral windows centred around
frequencies m/T. and having a noise bandwidth 2Af. The
Rice representation [3] of this narrow band limited noise
is the following :

Awf (1) =

I t—t t—t, | D
2[ o ()sin2mm—= + g, () cos2am——= }
m=1 L L

where p (1) and g, (t) are slowly variable random
amplitudes. The constant phase, -27mt,/T, is introduced
for convenience and does not affect the final result. The
one-sided power spectral density of p (t) and g,(t) is
related to that of Aw/z) around m/T, by:

S, (F<8f)=5, (£ <87)=2850, (m/T.)  ®

The frequency offset Say?) is calculated by substituting
Awf(r) for Aayz) in Eq. (4). According to the

assumptions made, p,(t) and g,(t) vary very little during
the time interval 7,. Therefore, they can be taken out of
the integral sign and we obtain :

o0

st )= —Awf(tk)+g—22[gipm(fk)+ ssan(ic)]

m=1
with 9
8m f sin2zam6 / T,
(85}) B -([g(e)(cos 27m8 I T, ]de (10)

where g(0) is defined during the time interval [0,7 ].
Referring to Eq. (6), the second term of the right-hand
side of Eq. (9) represents the low frequency noise of the
slaved oscillator resulting from the aliasing. The power
spectral density of these fluctuations is easily derived
from Eqgs. (8) and (9), and the related Allan variance is
given by:

oo 2 2

1 gC gS

2 - m m

Uylim(7)=,,2( 22 + 22 Syf(m/Tc) 1)
m=1 0 0

where S{ (m/TC)=S£af (m/Tc)/coO2 is the one-sided

power spectral density of the relative frequency
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fluctuations of the free running interrogation oscillator
at Fourier frequencies m/T..

4 EXAMPLE OF THE FREQUENCY SENSITIVITY
FUNCTION AND OF THE LEVEL OF FREQUENCY
STABILITY LIMITATION.

4.1 Principle of the calculation of g(t).

As shown in [4], the change of the quantum state of the
atoms interacting with a R.F. field of given amplitude
and phase can be represented in a matrix form. We have,
in general :

al<9) al(O)
a,(8) | = R| a,(0) (12)
a3(0)) | a3(0)

where a; and a, denote the atomic coherence and a; the
population difference of the two levels involved in the
transition. The column matrices at the right and at the
left represent the atom properties at the beginning and at
the end of an interaction of duration 8, respectively. R is
a 3x3 matrix whose elements depend on 8, the R.F.
amplitude and the phase.

Therefore, the population difference of atoms submitted
to various amplitude and phase conditions during their
interaction with the magnetic R.F. field can be
calculated from matrix products. The effect of the small
phase step € occurring at a given instant during the
interaction can be expressed easily. The subsequent
change OP(t,€) of the probability that a transition took
place during the interaction follows and g(¢) is obtained
using Eq. (2). In the event that the R.F. amplitude is not
a constant during the interaction, two different methods
can be implemented. One may divide the interaction
time into elementary intervals during which the
amplitude is assumed a constant. Or, the differential
equations describing the evolution of a , a, and a, (see

Eq. 5.2.20 of {4]) may be integrated numerically.
4.2 Ramsey method of interrogation

This method is applied in the cesium fountain at LPTF
[5]. The atoms experience successively two R.F. fields,
each for the time interval 7, and there is no R.F. field
applied between these two partial interactions, for the
time 7. Assuming T>>7 and that the magnetic R.F. field
is a constant, represented by the Rabi frequency b, we
have :

0 0<6<¢,
dsinb@ t,<0<ip+t
g(9)= dsinbt ty+7<0<t,+T+7
dsinb(T+21-6) 1, +T+T<O<1,+T+2T
0 tp+T+21<0<T,

(13)

where d=-sin{QyT sinbt and (2= @, according to the
half period of modulation considered. Fig. 1 shows the
variation of g(8) (assumed centred during the cycle,
solid line) and of the related coefficients gm/go, for
brt=n/2 which provides the optimal condition of
interrogation. It is assumed 7=0.015s, 7=0.5s and T =1s.
The function g(8) for b7=3w2 is shown also (dashed
line).

£(0)

br=3n/2

Lo
[
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2 fo2
log(g? /2%
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S0t .
0.0 05 1.0 1.5 2.0 2.5 3.0

log(m)
Fig. 1 The function g(6) and the related spectrum in the

case of a Ramsey interrogation scheme for
br=m/2 and b7=31/2.

In order to assess the level of the frequency stability
limitation due to the aliasing, we assume that the
oscillator is a VCXO and that the power spectral density
of its relative frequency fluctuations is given by:
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SJ(f)=3.210% £+1.0 107 £+3.2 10%f (14)

This hypothetical oscillator shows a flicker floor at the
level 2.1 10,
For the Ramsey method of interrogation, we have:

Oy im(D=1.17 1072 (15)
for the given values of the parameters.
4.3 Interrogation in a TE cavity

In the PHARAO project [6], it is planned to launch balis
of cold cesium atoms along the axis of a cylindrical
cavity tuned to a TEgy;, resonant mode. During their
interrogation, the atoms experience a magnetic R.F. field
whose amplitude is proportional to sin(nnd/ T;), where T;
is the total interaction time. In that case, g(¢) is
calculated numerically.

1.0

0.8}

06

£(6)

04t

02F

0.0

2 [o2
log(g? /%)

0.0 0.5 1.0 15 2.0
log(m)

Fig. 2 The function g(6) and the related spectrum in the
case of a multi-Rabi interrogation scheme.

Fig. 2 shows, for n=3, the variation of g(6) (assumed
centred ‘during the cycle) and of the related coefficients
&n/go- Here, the operating parameters are chosen so as to
provide the steepest slope of the resonance curve. This
is achieved for b.Ti/n = 3.66 and w,T; = 2.31, where b,
is the Rabi frequency at an anti-node of the magnetic
field. :

It is worth noting that, for m larger than about 10,
(gmg0)* decreases as mS, This property provides a very

good immunity against the white phase noise of the
oscillator. For T; = 0,53 s and T,=1s, we have:

Oyim(1)=1.35 10" ¢1? (15)
which is similar to the value given in Eq. (13).

5. EXPERIMENTAL EVALUATION OF THE
FREQUENCY STABILITY DEGRADATION.

In order to verify the model and provide evidence of the
aliasing effect, we have made various measurements
with an oscillator voluntarily degraded with different
types of frequency noise. For this ,we use the LPTF Cs
atomic fountain standard [5].

ATOMIC P (1) COMPUTER
REFERENCE NUMER.
INTEGRATOR

9.192..GHz

7.3.. MHz HP 3325B

FREQ. SYNT.

wa(tk)

100 MHz

NOISE

H-MASER SOURCE

Fig. 3 Schematic of the atomic fountain frequency

We have used three different sources of noise. Firstly a
white noise voltage in the range 0.1 Hz-1600 Hz (f 0
with the possibility of using different low-pass filters.
Secondly a flicker noise generator f lin the range 0.5-
100 Hz and thirdly a generator with spectral density
proportional to £, for Fourier frequencies from 0.5 to
100 Hz .

Swﬂicker freq.

ﬂ ker ph.
S loxer phase S whlte phase

0! 1 02 103 104
frequency {Hz]

S (f) [dBrad?/Hz] @ 9.192..GHz
8

]

Fig. 4 Measured phase noise spectral densities of the
degraded interrogation oscillator.

We use the noise generators to drive the phase
modulation input of a HP3325B synthesiser. The
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HP 3325B is used as an external generator for the
fountain frequency multiplication chain (Fig. 3). The
phase noise added to the HP 3325B is transferred to the
interrogation oscillator spectrum. The added noise is
high-pass filtered (0.1Hz) to avoid the degradation of
the medium and long-term stability of the oscillator
(Fig. 4).

The Allan standard deviation of the locked oscillator is
calculated taking the frequency output of the synthesiser
at the end of each cycle. As shown in Fig. 5 the
fractional frequency stability of the free running
oscillator, behaves as 1’ whereas the stability of the
locked oscillator is proportional to ©'2 This clearly
shows that the frequency stability of the locked
oscillator is dominated by the aliasing noise for
integration times longer than 10-20s.

10-11
$ ..
- 4 far] degraded
1012 “““i.\:\,. locked Osc.
- R S
£ e . —
D>‘ o “'\‘t\
o H-Maser .. by
S3E T T
10 / 1 / -
T free running -~ o]
.. degraded Osc. t
10-14 ——
1 10! 102

T [s]
Fig. 5 Fractional frequency stability of the free running
and locked oscillator

We measured the stability for two conditions: br=n/2
and br=3m/2. Tables 1 and 2 report the calculated

(Eq. (11)) and measured values for the flicker phase and
flicker frequency noises.

Table 1, br=n/2

Type of noise Gymeas.(ls) O'ycalc.(ls)

Frequency Flicker | 2.4 1072 2.3 10"

Phase Flicker 3.010" 291072
Table 2, b7=3%/2

Type of noise oymeas.(ls) Gycalc.(ls)

Frequency Flicker 2.8 1072 2.4 107"

Phase Flicker 4.8 10712 4.6 10"

For these types of noise the frequency stability limitation
mainly depends on the ratio between interrogation time
and cycle time. In order to verify precisely the model we
need a measurement which is more sensitive to the
shape of g(8). In the case of white phase noise the
frequency noise spectrum behaves as f and
consequently the down-conversion is strongly dependent
on the harmonic content of g(8). The possibility to

change the frequency noise spectrum by low-pass
filtering the noise source with different cut-off
frequencies improves the sensitivity of the
measurements. Fig. 6 reports the calculated and
measured results, which agree to the limit of the
measurements errors (20%). Measurements performed
with the filtered white phase noise confirms the validity
of the model even for different interrogation oscillator
levels (bt=m/2 and 31/2)

8 —e— meas. br=m/2
Th—w— calc. br=/2
6 —a— calc. br=3m/2 ///

i 5F —e— meas. bt=3n/.

% 4T 2

z at A \
== =
0 ) . :
100 101 102 103

frequency [Hz]

Fig. 6 Measured and calculated frequency stability
versus the cut-off frequency of the white phase
noise.

5. POSSIBLE MEANS FOR THE MINIMIZATION
OF THE FREQUENCY STABILITY LIMIT

In a cesium fountain, in the PHARAOQ set-up [6] or in a
trapped ions frequency standard, it will not be possible
to use notch filters to reject the oscillator noise at
Fourier frequencies m/T; since T. is equal to 1s or less.
The level of the annoying effect would obviously be
reduced with an oscillator, such as a cryogenic sapphire
oscillator [7] showing a much improved spectral purity.
However, we will limit ourselves here to exemplify the
beneficial effect of the increase of the interrogation duty
cycle [1] or in the case of cold atoms frequency
standards of the release of several balls during each
cycle, assuming that the VCXO characterised by Eq.
(14) is slaved to the atomic resonator. In the case of the
Ramsey method of interrogation, the total interrogation
time is T=T+27. Fig. 7 shows the variation of Oy
versus T/T, for three sets of parameter values.

o (Dx10-13 1112

Fig. 7 Frequency stability versus the interrogation duty
cycle for the Ramsey interrogation.



71

Several balls of cold cesium atoms can be launched
during a cycle. Fig. 8 shows, as an example, the
variation of Oy, versus the number of balls. It is
assumed that the interrogation occurs in a TEg; cavity
and that the time interval between two successive ball
releases is equal to T/6. Again, three sets of parameter
values are considered.

-------- +—T = 10g|
44— c
—— .— e o T = 3¢
T eTe
34 \0\ ¢ §
.- \
] e
8

6 (1) 1013 7172

/]

Number of balls

Fig. 8 Calculated frequency stability versus the number
of launched atomic balls for the multi-Rabi case.

Thus, it is possible, in an atomic resonator based on the
interrogation of atoms launched sequentially, to
minimise the limiting effect considered. This may be
accomplished by a proper design of the resonator
leading to a duty cycle as large as possible and/or by
launching a cloud of atoms several times during a cycle.
In the case of the ion traps it has been proposed to use
two parallel traps [8].

One may also note that in the two given examples, Oyiim
is the smallest for 1/T,=1Hz. This value is the closest to

the Fourier frequency, f, for which S; ( f ) of the

VCXO, shows a minimum. With the data of Eq. (14),
we have fp=5Hz. This suggests that, whenever possible,
the characteristics of the atomic resonator and of the
VCXO should be matched. This is achieved when the
condition fp = /T is fulfilled.

CONCLUSIONS.

In this paper we have developed a simple model for the
degradation of the frequency stability in a pulsed atomic
frequency standard due to aliasing of the frequency
noise of the interrogating oscillator. We have also
compared results of the calculations based on this model
with experimental values obtained by using the LPTF Cs
atomic fountain with a voluntary degraded oscillator.
The theory and the experiments agree in the limits of the
measurement errors. The frequency stability limitation is
about 10" if we use a state of the art 5-10 MHz VCXO
BVA. Better results can be achieved using cryogenic
sapphire oscillators. The model shows that the limitation
comes primarily from the flicker frequency noise of the
oscillator and the typical white phase floor does not

affect the results. It seems that there are no obvious
signal processing techniques which would be able to
reduce the consequences of the detrimental aliasing.
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